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DISCONTINUOUS DUAL-PRIMAL MIXED FINITE ELEMENTS FOR ELLIPTIC
PROBLEMS

CARLOL.BOTTASSO*,STEFANOMICHELETTIt,ANDRICCARDOSACCO$

Abstract. Weproposeanoveldiscontinuousmixedfiniteelementformulationforthesolutionof
second-orderellipticproblems.Fullydiscontinuouspiecewisepolynomialfiniteelementspacesareused
forthetrial andtestfunctions.Thediscontinuousnatureofthetestfunctionsattheelementinterfaces
allowsto introducenewboundaryunknownsthat, ontheonehandenforcetheweakcontinuityofthe
trial functions,andontheotheravoidtheneedto defineapriorialgorithmicfluxesasin standard
discontinuousGalerkinmethods.Staticcondensationisperformedat theelementlevel,leadingto a
solutionprocedurebasedonthesoleinterfaceunknowns.

Theresultingfamilyofdiscontinuousdual-primalmixedfiniteelementmethodsispresentedin the
oneandtwo-dimensionalcases.In theone-dimensionalcase,weshowtheequivalenceof themethod
with implicitRunge-Kuttaschemesof thecollocationtypeexhibitingoptimalbehavior.Numerical
experimentsinoneandtwodimensionsdemonstratetheorderaccuracyofthenewmethod,confirming
theresultsof theanalysis.

Subject classification.AppliedandNumericalMathematics

Key words, finiteelementmethod,mixedmethods,discontinuousGalerkin,Petrov-Galerkin,
ellipticproblem

1. Introduction and Motivation. Weconsiderthefollowingclassicalmodelproblem:

-div(vV__u)= f in f_ C R 2,u = g on c0f_,
(1.1)

where f_ is a bounded polygon with Lipschitz boundary , = cOf_, and v, f, g are given functions.

Dirichlet boundary conditions are considered only for the sake of simplicity, but the extension to

the case of more general boundary data is straightforward. Definitions of functional and geometrical

entities are given in section 2.

In view of the approximation of (1.1), we let {Th}h>0 be a family of triangulations of _ and, for

any Th, we denote by T any element thereof. Introducing the auxiliary unknown _a = uV_u, problem
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(1.1) can be reformulated in weak form over each element T of Th as

- - JT (1.2)

V v dx -/aT v ds = fv dx,

where _- and v are smooth vector and scalar functions, respectively, on T, while n T is the unit outward

normal vector to c_T.

A unified framework for the analysis of the Discontinuous Galerkin (DG) method applied to elliptic

problems in the form (1.2) was provided in ref. [1]. We shall follow the same path in the following,

since the proposed method fits well in that framework. The DG formulation at the discrete level reads

(see also [9]): find U h • U h and o-h • _h such that VT • Th

/T p-lO'h "7-hdX_-/T uhdiv7-hdx- E jfe hu7-h "nTd8 =0 V7-h •_(T),

_eOT (1.3)

IT _-h "_vh dx - _OT_e vhha "n--TdS = fT fVh dX VVh • U(T),
eC

where E(T) and U(T) are two sets of smooth vector and scalar functions, typically polynomials, defined

on each element T, while _h and Uh are the corresponding global finite element spaces. We are now

dealing with a Galerkin method where the values of the unknown fields on each edge _eof OT, noted

Uhk and ahk , have been replaced by the numerical fluxes h_ and h_. In practical implementations,

h_ and h_ are chosen as functions of the internal unknowns Uh and o-h on two neighboring triangles.

In particular, it can be shown that most methods reported in the literature can be classified based on

the particular choice of the numerical fluxes h_ and h_, choice often inspired by ideas borrowed from

finite volume methods. The interested reader can consult ref. [1] for exact details on the expressions

of the fluxes in the different cases.

It is clear that any particular choice on the nature of the numerical fluxes will affect the resulting

scheme, eventually determining its numerical characteristics, stability, accuracy as well as the pattern

of the stiffness matrix. This approach to the choice of the numerical fluxes is somewhat unsatisfactory,

in the sense that it seems to be a rather artificial and dogmatic process, in some sense a "violence"

to the underlying weak form (1.2). In this work, we shall therefore depart from the classical approach

of defining a priori the expressions of the numerical fluxes. Hence, the interface fields h_ and h_ •n T

are assumed to represent new additional problem unknowns, and we let the method implicitly define

their values. In doing so, we obtain a genuine Petrov-Galerkin version of the DG method.

This formulation generalizes the method described in refs. [2, 3, 4, 5] to multiple spatial dimen-

sions. In the one-dimensional case, the method can be shown to be equivalent to collocation-type

implicit Runge-Kutta (RK) schemes. In particular, when used in conjunction with Gauss-Legendre

quadrature, the finite element method here proposed corresponds to the Kuntzmann-Butcher (Gauss)

RK scheme, which enjoys well known properties of optimality. This provides a strong motivation for

seeking an extension of those ideas to the multi-dimensional case, extension that is attempted in this

work for the elliptic boundary-value problem.

The paper is laid out as follows. Section 2 presents the proposed method for the classical problem

of the Laplacian. Section 3 deals with the one-dimensional formulation of the present method and



with its connectionswith thetimefiniteelementandRK methodsof refs.[2,3,4, 5]. In doingso,
weshalltemporarilyabandonthesimplelinearmodelproblem,andpresentthemethodfor ageneral
non-linearODEproblem.Section4isdevotedto thedescriptionofthemethodin thetwo-dimensional
case.Numericalresultsarediscussedin section5,wheretheproposedmethodisvalidatedononeand
two-dimensionaltestcases.Finally,theconclusionsarediscussedinsection6.

2. The DiscontinuousDual-Prlmal Mixed Method for a Model Problem. Wearenow
readyto definetheproposedDiscontinuousDual-PrimalMixed(DDPM)discretizationof theone-
elementweakformulationofproblem(1.1):find Uh E Uh, a_h E E h, _h E Ah,g and #h E Ah such that

VT E Th we have

JT JOT (2.1)

_--h"V--vhdx -- fo ITT STVhph ds = fvh dx Vvh • V(T).

The meaning of the symbols is as follows. For any Th • {Th}h>0, let _h be the associated set of

edges. For any edge _e of gh, we denote by n¢ the unit normal vector to _e, directed according to a

uniquely fixed arbitrary convention. Namely, n¢ coincides with the unit outward normal vector on the

boundary, if e_N, _ 0, otherwise n¢ coincides with one of the two outward normals to the triangles

sharing the edge _eif_eN, -- 0. Then, for any T • Th we denote by n_T the unit outward normal vector

to OT and define the sign function ST = n_¢ • n_T = ±1. Through the use of ST, we can associate the

interface degrees of freedom with mesh edges, so that the sign function will determine whether a given

flux Ph is entering of exiting from a given triangle. For simplicity, we shall omit in the following the

dependence of n_ on the edge e_ which will be understood.

Given the fact that the edge fluxes are now unknowns to the problem, we can not choose test and

trial functions within the same spaces, as for the DG method (1.3). Therefore, we are now dealing

with a Petrov-Galerkin formulation. The global finite element spaces for the internal variables a_h and

Uh are defined as

Eh = {vh • L2(_)I v_hIT• E(T) VT • Th},

Uh = {Vh • n2(f_)IVhlT • U(T) VT • Th},

where L2(f_) = (L2(f_)) 2. Considering now the interface fields /_h and Ph, we note that they represent

the traces of u and a. n T on cOT, respectively. Using the language of computational mechanics, the

new unknowns act as "mixed connectors" between neighboring triangles (see [16] and [18], Chapter

13). We let A(e_) indicate a set of scalar smooth functions defined on each edge _e. Then, we define the

(global) finite dimensional spaces

Ah = {_/h • n2(gh)Inhl_ • A(__) v__ • Eh},

Ah,g = {_lh • Ah[_lh = 7)gif_e n, _ 0},

where 7) is the L2-projection operator on A(_e). Finally, we introduce the local and global finite element

spaces for the test functions _- and v. Denoting by W(T) and V(T) two sets of smooth vector and



scalarfunctionsdefinedoneachelementT, we have

wh = {zh • L2(_)IzhIT • W(T)VT • Th},

Vh = {Wh • Le(_) IWhIT• V(T) VT • _ } .

The choice of the functional spaces will be detailed in the following sections for the one and the

two-dimensional case.

We note that the method is completely conservative in the sense of ref. [1], since the interface

unknowns are associated with edges and are consequently identical for two triangles sharing the edge.

This last property implies the following conservation statement

eCOU £

where U is the union of some collection of elements, and Vh was taken to be identically unity in the

second of (2.1).

The DDPM approach can be viewed as a consistent hybridization of the dual-primal mixed (DPM)

method introduced in ref. [12]. Indeed, the spirit of the standard hybridization procedure (see [7],

Chapter V) is to relax the continuity of some of the unknowns (a_. n_ in the dual hybrid philosophy or

u in the primal hybrid philosophy) and then to enforce it back through the introduction of suitable

inter-element Lagrange multipliers. Precisely, ul_ represents the Lagrange multiplier in the case of

dual hybrid methods, while _a. n_l_ is the Lagrange multiplier in the case of primal hybrid methods.

In the present case, we relax the continuity of both u and a. n in the interior fields and let the

interface variables connect neighboring elements. The interface variables A and p do not play the

role of Lagrange multipliers in our case but, nevertheless, enjoy appealing properties. Physically, they

have the clear meaning of ul_ and a_. n_l_, respectively, while numerically they exhibit a higher rate of

convergence than the internal variables, as it will be shown in the following. This is also a feature of

the Lagrange multipliers in the case of standard hybrid methods ([7], Chapter V).

Alternatively, one could note that, by gluing the test functions together at neighboring triangles,

each internal edge receives equal and opposite contributions from the two elements using it, and

therefore the boundary unknowns are eliminated. This way one recovers from (2.1) the DPM method.

3. The DDPM Method in the One-Dimensional Case. We abandon now for the moment

the linear model problem (1.1), and we consider a generic system of first order ODE's

z_' = f(z_, x), (3.1)

where z_,f • ][_D and D is the number of state variables. Suitable initial or two-point boundary

conditions complement problem (3.1). In the case of the linear model problem, we clearly have

z z (U,a) T and f = (a, _f)T. However, since the discussion can be easily completed for the more

general case, we consider (3.1) instead of the one-dimensional version of (1.1) in the remainder of this

section.

We assume _ = (0, X) and let 0 - x0 < Xl < ... < xn-1 < xn - X be a given partition Th of

X ninto n _ 1 intervals Ti = [xi,xi+l] of size hi, i = 0,... ,n - 1, where { i}i=0 are the nodes. Note

X nthat in the one-dimensional case _h _ { i}i=0 and each edge _edegenerates into one single node.



Thestatementofthepresentfiniteelementmethodisasfollows:find (Zh,_Ah)E(Zh × Ah) such

that for each Ti E Th, i = 0,... , n -- 1, the following holds

IT Zh " Wlh dX "_ /T f(Zh,X) " Wh dX -- ()_i+l " Wh(Xi+l) -- )_i " Wh(Xi)) : 0

Vw h • W(Ti). (3.2)

For any T • Th, we define the local finite element spaces for the internal fields z h and for the test

functions as follows:

Z(T) : (_k(T)) D, W(T) : (_k__l(T)) D,

with k _ 0. The local finite element space for the interface unknowns "_h is

A(OTi) : {hi, )_i-[-1 }, i = 0,... , n -- 1,

where for any function _A• A(OTi) we let _Ai = _A(xi) and _Ai+1 = _A(Xi+l), i = 0,... , n-1. Furthermore,

we set

LI(T) = U_(T) × A(OT), F_(T) = W(T).

The finite element space is then

D]Pk(T) = {(z_,_;w) I (z_,_;w) • L/(T) × F(T) VT • Th}. (3.3)

The global finite element spaces for the internal fields and the test functions are

_h = {Zh • (L2(_)) D IZhlT • Z(T)VT • Th},

W h = {w h • (n2(_)) D IWhlT • W(T) VT • Th},

while the global spaces for the interface unknowns are

A_h: I_Xi• RD, 0, ,n},

where functions are defined only at the nodes of 8h. Finally, gathering the previous definitions, we

obtain the global finite element space as

]I}]Pk = (Z h × A_h) × W h. (3.4)

It is clear that both initial and boundary-value problems can be solved within this framework.

For an initial value problem, one can solve marching sequentially in an element-by-element fashion, as

with any time stepping procedure. We have: dim(Z(T)) = D(k + 1), dim(W(T)) = D(k + 2) VT • Th.

Therefore, for any T • Th, (3.2) leads to a system of D(k + 2) equations in the D(k + 1) + 2D

local unknowns z hIT, "_hIT, leaving space for the D initial conditions that complement problem (3.1).

A boundary-value problem leads to a global discrete problem defined over _. In this case we have

nD (k+2) equations in the nD (k+ 1)+2nD unknowns. However, considering that -_i+1 appears in both

neighboring elements Ti and Ti+l, the total unknown count is reduced to nD(k + 1)+ 2nD- (n- 1)D,



whichleavesonceagainspacefor D two-point boundary values. In both cases, the internal field z h

can be eliminated at the element level in favor of the interface unknowns -_a, and then recovered at

convergence.

We note that the scheme presents two jump discontinuities for each finite element, namely one at

xi and the other at Xi+l, since -_i _ Za(Xi) and -_i+1 _ Za(Xi+l). For this reason it was termed the

Bi-Discontinuous (BD) scheme in ref. [3]. It is clear that such symmetric treatment of the element

boundaries implies no privilege in the direction of the flow of information, and it is therefore best

suited for two-point boundary-value problems.

Quite differently, for initial value problems it is sometimes desirable to have stimy accurate

schemes, that are able to damp the higher frequencies components from the computed response [II].

This is achieved in practice by forcing a lack of symmetry in the scheme, that incorporates the knowl-

edge on the direction of flow of information within the element. It is possible to derive such schemes

in the present framework, allowing one single jump discontinuity at xi while enforcing the condition

-_i+1 -- Za (Xi+l). One obtains in this case the so called Singly-Discontinuous (SD) schemes [3].

3.1. Equivalence with Runge-Kutta Methods. It was shown in ref. [3] and then again with

a slightly different proof in ref. [4], that the finite element method (3.2) can be written as a RK process

for any order k. RK methods are probably best known for the solution of initial value problems, but

clearly can also be used for the solution of two-point boundary-value problems by assembling the

single steps to yield a global discrete problem defined over the whole computational domain, exactly

as in the finite element method. Since the link between the two approaches seems to be useful in the

characterization of the proposed method, we briefly review this result in the following.

We begin by selecting a quadrature rule for the evaluation of the integrals in (3.2). The rule is

defined by s abscissze ci and weights bi. We consider the case s -- k + 1, therefore the number of

quadrature points is the same as the number of finite element nodes of the trial functions.

Following the usual FEM practice, one expresses the discrete equations in terms of the nodal

values. Here we shall take a different approach, and assume as unknowns the values o] the finite

element trial ]unctions at the quadrature points. This is the key idea for showing the link existing

between finite element and RK methods. The change of unknowns can be done because we are using

a quadrature rule that uses as many integration points as the number of finite element nodes, as

previously said. We will come back later to some interesting consequences of this assumption.

We first note that the test functions can be expressed as

k_-2

W--h = E Ti-l(l--i' (3.5)

izl

where TJ are polynomials, _- E R, and _--ktheir associated amplitudes. Next, let us define the (s+l) × s

matrix P_ = ITi-11_=_j], with i = 1,..., s+l, j = 1,..., s, the _j's being s real values. The derivative

of P_ with respect to _- is then P_ = [(i - l_-i-2j _=_J J'l Note that, for any choice of the _j's, the first

row of P_ is all made of one's, and the first row of P_ is all made of zero's. For _j = cj, we have the

matrices Pc i--1 ! [%]= [cj ], P" = [(i- 1)c}-2]. We also define the s × s diagonal matrix B = bi_ , with

i = 1,... , s, and the following s-dimensional vectors: b = (bl, b2,... , bs) T, c = (Cl,C2,... ,cs) T, and



O_= (0,0,... ,0)T, 1 = (1, 1,... , 1) T, 11 = (1,0,... ,0) T.

We note that

T iQ being the s x s matrix Q = [ I_-=cjbj] = [c}bj]. The derivative of Q with respect to T is given by

Q' = [i c}-lbj]. Furthermore, if the quadrature formula is of order s, we have that

Q'!=!. (3.7)

Equation (3.7) corresponds to the so called "B simplifying assumption" in the theory of RK methods.

The discrete weak form (3.2) can now be written as

((PIcB) _ ]_D) Z_ -_- hi((Pc B) _ ]_D) _ : (1 _ ]_D) )_i+l -- (11 (_) lID) "_i, (3.s)

where the following two sD-dimensional vectors were defined: __ = (z_l,... ,z_s) T, _ : (f(zl,xi +

Clhi),... ,f(z_S,xi -4-cshi)) T. ]ID is the D × D identity matrix, while ® denotes the tensor Kronecker

product of matrices, so that (.) ® lID ensures that all degrees of freedom of the vectorial problem are

integrated according to the same rule.

Solving for _ and -_i+l and using (3.7), we have

(_,/_i+I)T [ 11 hi(lbT-Q'-lQ)]®]ID()_i'_f)T'hibT _ _ (3.9)

From this expression, we conclude that (3.2) can be written as a s-stage RK method whose tableau

[I0] is given by

lb T - Q,-1 Q

b T

(3.10)

Finally, we test the Gauss-Legendre, Lobatto and Radau quadrature rules and compute the cor-

responding tableaux (3.10). The results are summarized in Table (3.1).

TABLE 3.1

Correspondence between quadrature rules for BD finite elements and RK methods.

Quadrature Rule RK Method

Gauss Kuntzmann-Butcher

Lobatto Lobatto IIIB

Radau-Left Radau IA

Table (3.1) shows that the family of schemes deriving from the one-dimensional finite element

method considered in this work corresponds to some well known RK algorithms. The two approaches

differ on the choice of the unknowns: the finite element method solves for the nodal values, while



theRK methodsolvesforthe quadrature point values. However, these two sets of values are simply

related by a linear transformation. Furthermore, note that all RK schemes appearing in the table

are of the collocation type, where polynomials interpolate the two interface values -_i, -_i+1 and the

internal stages _ [10]. This link between finite elements and RK processes allows a somewhat unique

way of looking at the discretization procedure: from the finite element point of view we see jumps

in the field variables, since we have discontinuous interpolations of the internal fields, glued together

from one element to its neighbor through the presence of the interface unknowns. Quite differently,

from the RK point of view we have continuous interpolations of the interface unknowns with internal

variables at the collocation points, with apparently no jump discontinuities in the solution. It should

also be remarked that for these RK methods, maximal order is in general attained only at the interface

values, and not at the internal stages. We then expect to observe higher rates of convergence of the

interface fields also in the multi-dimensional generalization of the method.

The same table shows that the present finite element formulation, when used in conjunction

with Gauss-Legendre quadrature, yields the Kuntzmann-Butcher (or Gauss) RK methods. These RK

schemes are probably the ones that enjoy the greatest number of numerical properties, and are in

this sense optimal. In fact they are of maximal order (2s), they are algebraically stable, and also

symplectic when applied to Hamiltonian systems [17]. Simplecticity is the distinguishing property of

Hamiltonian systems, and its numerical preservation has a strong influence on the behavior of the

integration scheme.

As a final point, we note that these results are solely based on having assumed a quadrature rule

that uses as many points as the number of finite element nodes. In reality, working from the point

of view of the finite element method, one could choose to use a greater number of quadrature points,

for example in the hope of improving the accuracy in the evaluation of strongly non-linear functions
/*

in the term /,_ _f(Zh, X) .W h dx. It can be shown however, that increasing the number of quadrature

points can in reality degrade the performance of the method. For example, using a larger number of

points destroys the symplectic nature of the scheme [3].

4. The Two-Dimenslonal Case. For two spatial dimensions, the choice of the finite element

spaces for the internal and interface unknowns is a straightforward extension of those introduced in

the one-dimensional case. Precisely, for k _ 0 we set

_r(T) = (_k(T)) 2 , U(T) = _k(T) VT • _,

A(e) = ]?k(e) Ve • 8h.

The choice of the finite element test spaces is less obvious and requires some care. Here we

focus on the description of the method in the cases k = 0 and k = 1. We start by introducing the

Raviart-Thomas finite element space of degree k [14]

RTk(T) = (]?k(T)) 2 _ xl?k(T) VT • _.

In the case of the DIP ° finite elements, we set W(T) = RT0(T) and V(T) = ]P1(T). The global finite

element spaces W h and Vh are then simply defined as the products of the corresponding local spaces.



Noticethat W h and Vh are the discontinuous counterparts of the corresponding test spaces that have

been used in the dual-primal formulation of ref. [12].

In the case of the ]I}]Ph finite elements, we set W(T) = ]l_rrl (T) and V(T) = ]P2(T) ® g3(T) for

each T • Th. B3(T) is the following cubic bubble [15]

_3 ---- ((frO -- (ffl)((ffl -- (ff2)((ff2 -- (frO),

where _i = _i(x), i = 0, 1, 2, are the centroidal coordinates of a point x • R 2 with respect to the

vertices of T. Enrichment of the scalar test space is a standard procedure in hybrid methods when

the degree of the polynomials in V(T) is even (see refs. [15, 8]). Actually, one can check that without

adding the cubic bubble the rectangular matrix arising from the integral _/_T STVhPh ds becomes rank
deficient.

As far as the implementation is concerned, we point out that for both the k = 0 and k = 1 cases

it is possible to perform a static condensation of the internal variables in favor of the edge unknowns,

obtaining a linear system in the sole interface variables Ah and Ph.

The generalization of the DDPM method to higher orders will be more extensively addressed in a

forthcoming paper. Let us just mention that a possible general recipe for constructing the ]I)]Pk finite

element spaces for even k can be given as

W(T) = BDFMk+I(T), V(T) -- _)k+l (T) VT • _h,

where BDFMk+I is the triangular analogue of the reduced element introduced in ref. [6].

5. Numerical Results. In this section we demonstrate the ]I)]Pk finite elements for k = 0 and

k = 1 through the solution of test cases in both one and two spatial dimensions.

5.1. One-Dimensional Examples. We consider the following two-point boundary-value model

problem

{ -(p(x)u'(x))' = f(x), 0 < x < 1,
(5.1)

u(0) = u(1) = 0.

In all numerical experiments, successively finer uniform grids of size h = 2-j, j • {1,... , 9} are used.

We set e_ = u - Uh and e_ = a - ah; moreover e_ and e_ denote the functions defined only at the

nodes of Ch such that e_,(xi) = u(xi) - ,_i and e_(xi) = a(xi) - #i, i = 0,... ,n.

For any function v • L2(_) and sufficiently smooth on each T • Th, we denote by I1,T(V) the

approximation of fT V dx using the trapezoidal rule. Moreover, for each T • Th we denote by {Xj,T}j=O-k k

the k + 1 Gauss-Legendre points on T. In order to measure the convergence rate of the ]I}]Pk finite

elements, we use the following three norms:

n--1 )) 1/2
Ilvll ,o,o= (v2

\i=0

max Iw( _° T))I,

iC{O,'" ,n--l}

NWNh'_P'_ --- max ( max (IW(_}T)I)_
iC{O,...,n--1} \jC(O,lJ- ' ] '

II llh, = max Iz]il,
it{0,... ,n)

ilk = 0,

ilk = 1,



wherew is any bounded function defined at the Gauss points of Th and U is any bounded function

defined at the nodes of Th. Clearly, H" Hh,0,a is a discrete L2(fl) norm, while the other two norms are

discrete maximum norms over the set of Gauss points and gh, respectively. The quadrature formula

used in the discrete norm is accurate enough not to pollute the computed accuracy, and at the same

time avoids to sample the solution at superconvergent points. Moreover, observe that any integral

appearing in the DDPM discretization of (5.1) has been computed using a one-point Gauss-Legendre

quadrature rule (with node xo° on each T E Th) for k = 0 and a two-point Gauss-Legendre quadrature

rule (with nodes -1 1{Xj,T}j= 0 on each T E Th) for k = 1.

The following symbols are used in the graphs: for any h, symbol '*' refers to He_Hh,0,_ (or

He_Hh,0,_), while symbols '0' and %' denote He_Hh,Gp,_ (or He_Hh,Gp,_) and He_Hh,_ (or He_Hh,_),

respectively.

Test Case 1 We set p(x) = 1 and f(x) = sin(_x), x • [0, 1]. The exact solution is the smooth

function u(x) = (1/_ 2) sin(_x), which implies a(x) = u'(x) = (1/_)cos(_x). We show in figure 5.1

the error curves for e_ and e_ (left) and e_ and e_ (right) in the case k = 0. The corresponding error

curves in the case k = 1 are shown in figure 5.2.

100 100

10-2

10-4

10-e

10-8I

10-3

10-2

10-4

10 -2 10 -_ 10 0 10 -2

10-6

10-8t

10-3 10-_ 100

FIG. 5.1. One spatial dimensions, test case 1. Approximation errors eu and eh (left) and e_ and e_ (right) for

D]_ 0 finite elements.

The plots show second-order convergence for the interface unknowns in the case k -- 0, while the

internal unknowns are only first-order accurate. Superconvergence of the internal variables can be

observed at the Gauss point. For the ]I}]Ph finite elements, the error curves show that the interface

unknowns are fourth-order convergent, the internal fields are second-order accurate while a third-order

convergence rate is exhibited by the internal unknowns at the two Gauss points of each element. All

these results are in agreement with the theory of RK methods.
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10° 10°

10 -5

10 -1o

i0-_oI

10 -a 10 -2

10-5

10-10

10-15f

10-3 10 -2

FIe. 5.2. One spatial dimensions, test case 1. Approximation errors eu and e;, (left) and e_ and e# (right) for
Dpih _nite elements.

Test Case 2 This test problem demonstrates the performances of the DDPM method in the presence

of strong solution gradients. The coefficient p and the source term f are chosen as in ref. [13] (see

also ref. [8], section 4.4.1, for further comments), and read

1
= - + - 3)2,

f(x) ----2 (1 + OZ(X -- X) {tan-i (oz(/ -- 3)) + tan-i(oz/)}) .

The exact solution is

u(x) -- (1 - x) (tan -1 (oz(x - 3)) + tan -1 (ozx)) ,

(1 ){ o }CT(X) ---- + OZ(X -- 3) 2 -- tan -1 (oz(x -- 3)) -- tan -1 (ozx) + (1 -- x) 1 + c_2 (x -- 3) 2 '

where a(x) --- p(x)ut(x). Furthermore, we set c_ --- 100 and _ -- 0.36388.

We show in figure 5.3 the error curves for eu and ex (left) and ea and e# (right) in the case k -- 0.

The corresponding error curves in the case k -- 1 are shown in figure 5.4.

The numerical results clearly show the increased "roughness" of the problem when compared

with the corresponding error curves for test case 1. Nevertheless, all variables attain the expected

convergence rate as h -+ 0. Figure 5.5 shows the exact solution u (solid line) plotted against the finite

element solution /_h computed with ]I}]P)° elements and h -- 1/20. Notice the sharp internal layer,

resolved within one element.

5.2. Two-Dimensional Examples. For the two-dimensional case, we consider (1.1) in the

square domain _ -- (-1, 1) 2 with g -- 0. The exact solution is in this case u(x, y) = (x 2 -1)(y2 _ 1) and

__(x, y) = 2 (x(y 2 - 1), y(x 2 - 1))T; the right-hand side f is computed accordingly. In all numerical

experiments, we use a uniform grid of isosceles right triangles of size hx -- hy = h, where h takes on

the values 21--J/5, j • {0, 1, 2, 3} for the D_ ° case and (2/5, 2/10, 2/20, 2/30} for the D_ case.
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F[c. 5.3. One spatial dimensions, test case 2. Approximation errors eu and e;, (left) and e,_ and e# (right) for

DIP ° finite elements.
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F[c. 5.4. One spatial dimensions, test case 2. Approximation errors eu and e;, (left) and e,_ and e# (right) for

_[_1 h finite elements.

As in the one-dimensional examples, we denote by e_ -- u - uh and e_¢ -- __- _-h the discretization

errors associated with the internal fields, while ex = 79£ - £h and e# = 79# - #h are the discretization

errors associated with the interface fields. 7) is the L2-projection operator on A(_e), for each _eE Ch.

Furthermore, for any T E Th we denote by ITI the measure of T, by _at, r = 0, 1, 2 the vertices of T,

by Xc, T the centroid of T and by Xj,T, j = 0, 1, 2 the three Gauss points of T obtained from the area

coordinates {2/3, 1/6, 1/6} by permutation. In order to measure the convergence rate of the ]I}_
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F_c. 5.5. One spatial dimensions, test case 2. Exact solution (solid line) and numerical solution Ah ('o') computed

using D? 0 finite elements (h = 1/20).

finite elements, we introduce the following discrete norms:

Ilvllh,o,_= v(ar)) 2 ,
\TCTh r=0 /

{ _lv(xc,T)l,Ilvllh,G_,oo= max max Iv(x'-_),l
TeThje{0,1,2} '

Ilr/llh,-1/2,Eh= I-_lll_lli__ ,
\eCgn

if k = 0,

if k = 1,

where v is any sufficiently smooth function on T belonging to L2(f_), _ is any function belonging to

L2(_e) for each _e6 $h and N_N0,_ is the L2-norm on edge _e. Notice that N" Nh,0,e is a discrete L2(f_)

norm, N" Nh,_g,_ is a discrete L_(f_) norm, while N" Nh,-1/2,Ch is a discrete H-1/2(gh) norm (see also

ref. [7], Sect. V.3). For vector functions v_ = (Vl,V2) T, the above norms are defined

II_vllh,0,_ (Ei=l,2 2 "_1/2: Ilvillh,o,_) ,

Ilullh,GP,oo= maxic{1,2} Ilvillh,GP,oo.

In the following figures, symbol '*' is used to denote [[e_llh,o,e (or [[_e_llh,O,_), while symbols '[7'

and 'o' denote Ile_llh,GP,_(or II-_llh,GP,_)and Ilexllh,-1/2,Eh (or Ile.llh,-1/2,Eh), respectively.

We show in figure 5.6 the error curves for e_ and ex (left) and _e_ and e, (right) in their respective

norms for the case k = 0. The corresponding error curves in the case k = 1 are shown in figure 5.7.

For the u field, the plots show second-order convergence for the interface unknowns in the case

k = 0, while the internal unknowns are only first-order accurate. Superconvergence of the internal

variables can be observed at the Gauss point. This behavior is similar to the one observed in the

one-dimensional case. For the __ field, the plots show once again second-order convergence for the

13
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V_C. 5.6. Two spatial dimensions. Approximation errors eu and ex (left) and e__ and e_ (right) for DP ° finite

elements.

10 0 10 0

10 -1

10 -2

10 -1

10 -2

10 -4 10 -4

10-1 100

V_C. 5.7. Two spatial dimensions. Approximation errors eu and ex (left) and e__ and e_ (right) for DPlh finite

elements.

interface unknowns, while the internal unknowns are only first-order accurate. However, for this field

superconvergence at the Gauss point is not observed.

In the case of DIP h finite elements, the error curves for the u field show third order accuracy

for the interface unknowns, and second order accuracy for the internal unknowns. For the a_ field,

the interface unknowns achieve an order equal to approximately 5/2, while the internal variables are

second-order accurate. Once again, superconvergence is not observed at the Gauss points.

14



In all cases, the interface unknowns are consistently more accurate than the internal fields, as

expected from the one-dimensional analysis, although the exact order achieved by the various fields

does not seem to obey an obvious rule. As far as the order of convergence of Xh is concerned, the

results agree with the classical convergence analysis of dual-hybrid methods. Actually in this case

one obtains (9(h k+2) when the Raviart-Thomas finite elements of degree k are employed (see [7], sect.

V.3, formula (3.19)).

Let us conclude by comparing the performance of the DDPM approach to the performance of the

standard dual method. In particular, we consider the DIP ° method with static condensation versus the

dual method using lowest order Raviart-Thomas finite elements (D °) with no hybridization. Table 5.1

shows the results obtained for the example here considered. The meaning of the various entries is the

following: h is the value of the mesh size on the boundary of the domain, dim is the dimension of the

matrix associated with the linear system, nnz is the number of non-zero elements of the same matrix

and flops is the number of floating-point operations as computed by Matlab using sparse operations.

The table on the left refers to the DIP ° case, while the table on the right collects the results for the

D ° case. In the first case, flops includes assembly, solution of the linear system and recovery of the

internal fields, while in the second case it considers the sole assembly and solution phases, since there

are no recoveries to perform.

TABLE 5.1

Flop countsSo_the DP ° an_ D ° methods

h dim nnz flops h dim nnz flops

2/5 150 662 41424 2/5 135 617 26888

2/10 600 2713 224775 2/10 520 2272 209964

2/20 2400 11060 1835876 2/20 2040 9752 2993179

2/40 9600 44267 16867719 2/40 8080 36112 22407438

The tables show that the D_ ° method performs better than the D ° method in terms of flop-count

as the dimension of the linear system grows, despite the fact that the dimension of the matrix and

the number of its non-zero entries are greater than in the D ° case.

6. Conclusions. We have presented a novel mixed dual-primal finite element formulation for

elliptic boundary-value problems. This work is a first attempt at generalizing discontinuous finite

element formulations for generic ODE problems that were developed in previous papers. The one-

dimensional formulation can be shown to lead to optimal RK methods, and therefore provides a strong

incentive towards the generalization to multiple space dimensions.

The DDPM method uses interpolations of the unknown fields which are discontinuous between

neighboring triangles, in the same spirit as the DG method. However, no particular expression of the

numerical fluxes is selected a priori in this case. Additional unknowns are introduced at the element

interfaces, that act as connectors gluing neighboring triangles together. The discontinuous internal

unknowns can be eliminated at the element level, leaving a solution scheme in the sole interface

variables. A higher rate of convergence is observed for the interface unknowns with respect to the
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internalvariables,asexpectedfromtheanalysisin theone-dimensionalcase.Numericalexamples
havebeenpresentedto supporttheanalysisandprovidenumericalevidenceofthecharacteristicsof
themethodhereinvestigated.

Futureeffortswill concentrateontheextensionoftheseideasto othermodelproblems,andon
comparisonsofthisclassof methodswithalternative,wellestablishedsolutionprocedures.
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